- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bertola, M (1)
-
Jenkins, R (1)
-
Tovbis, A (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We obtain Fredholm type formulas for partial degenerations of theta functions on (irreducible) nodal curves of arbitrary genus, with emphasis on nodal curves of genus one. An application is the study of ‘many-soliton’ solutions on an elliptic (cnoidal) background standing wave for the Korteweg–de Vries (KdV) equation starting from a formula that is reminiscent of the classical Kay–Moses formula for N -solitons. In particular, we represent such a solution as a sum of the following two terms: a ‘shifted’ elliptic (cnoidal) background wave and a Kay–Moses type determinant containing Jacobi theta functions for the solitonic content, which can be viewed as a collection of solitary disturbances on the cnoidal background. The expressions for the travelling (group) speed of these solitary disturbances, as well as for the interaction kernel describing the scattering of pairs of such solitary disturbances, are obtained explicitly in terms of Jacobi theta functions. We also show that genus N + 1 finite gap solutions with random initial phases converge in probability to the deterministic cnoidal wave solution as N bands degenerate to a nodal curve of genus one. Finally, we derive the nonlinear dispersion relations and the equation of states for the KdV soliton gas on the residual elliptic background.more » « less
An official website of the United States government
